

The Metabolic Syndrome in Children and Adolescents

Rotshild Vicky <u>Pediatric Clinical Pharmacist</u>

The Metabolic Syndrome

- Metabolic syndrome: children vs. adults
 - Definition
 - Clinical Implications

Cardiometabolic Risk Factors Tend to Cluster

The Metabolic Syndrome

WHO Criteria for Metabolic Syndrome

In order to make a diagnosis of the metabolic syndrome a patient must present with glucose intolerance, impaired glucose tolerance (IGT) or diabetes and/or insulin resistance, together with two or more of the following components:

- Impaired glucose regulation or diabetes
- Insulin resistance (under hyperinsulinaemic euglycaemic conditions, glucose uptake below lowest quartile for background population under investigation)
- Raised arterial pressure ≥ 140/90 mm Hg
- Raised plasma triglycerides (≥ 1.7 mmol/L; 150 mg/dL) and/or low HDL cholesterol (< 0.9 mmol/L, 35 mg/dL men; < 1.0 mmol/L, 39 mg/dL women)
- Central obesity (males: waist to hip ratio > 0.90; females: waist to hip ratio > 0.85) and/or BMI > 30 kg/m²
- Microalbuminuria (urinary albumin excretion rate ≥ 20g/min or albumin:creatinine ratio ≥ 30 mg/g)

Report of a WHO consultation 1999

ATP III Definition of Metabolic Syndrome

Three or more of the following five risk factors:

Risk factor	Defining level
Central obesity • Men • Women	Waist circumference > 102 cm (> 40 in) > 88 cm (> 35 in)
Triglycerides	≥ 150 mg/dL (1.7 mmol/L)
HDL cholesterol • Men • Women	< 40 mg/dL (1.03 mmol/L) < 50 mg/dL (1.29 mmol/L)
Blood pressure	≥ 130/ ≥ 85 mm Hg
Fasting glucose	≥ 110 mg/dL (6.1 mmol/L)

National Cholesterol Education Program. JAMA, 2001

The IDF Definition of Metabolic Syndrome

Central obesity (defined as waist circumference \geq 94cm for Europid men and \geq 80cm for Europid women, with ethnicity specific values for other groups)

plus any two of the following four factors:

- raised TG level: ≥ 150 mg/dL (1.7 mmol/L), or specific treatment for this lipid abnormality
- reduced HDL cholesterol: < 40 mg/dL (1.03 mmol/L*) in males and < 50 mg/dL (1.29 mmol/L*) in females, or specific treatment for this lipid abnormality
- raised blood pressure: systolic BP ≥ 130 or diastolic BP ≥ 85 mm Hg, or treatment of previously diagnosed hypertension
- raised fasting plasma glucose (FPG) ≥ 100 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes If above 5.6 mmol/L or 100 mg/dL, OGTT is strongly recommended but is not necessary to define presence of the syndrome.

International Diabetes Federation, Lancet 2005

The Definition of MS in Children

- There was no single definition of the MS in children
- Most definitions were adaptations of the adult:
 - National Cholesterol Education Program
 - WHO World Health Organization
 - European Group for the Study of Insulin Resistance
 - Unique definitions

The IDF Definition of Metabolic Syndrome in Children

Age 6 to <10 years

- Obesity ≥90th percentile as assessed by waist circumference
- Metabolic syndrome cannot be diagnosed, but further measurements should be made if family history of metabolic syndrome, type 2 diabetes mellitus, dyslipidaemia, cardiovascular disease, hypertension, or obesity

International Diabetes Federation, Lancet 2007

The IDF Definition of Metabolic Syndrome in Adolescents

Age 10 to <16 years

- Obesity ≥90th percentile (or adult cutoff if lower) as assessed by waist circumference
- Triglycerides ≥1.7 mmol/L
- HDL-cholesterol <1.03 mmol/L
- Blood pressure ≥130 mm Hg systolic or ≥85 mm Hg diastolic
- Glucose ≥5.6 mmol/L (oral glucose tolerance test recommended) or known type 2 diabetes mellitus

Age >16 years

Use existing IDF criteria for adults²

International Diabetes Federation, Lancet 2007

AHA Scientific Statement

Progress and Challenges in Metabolic Syndrome in Children and Adolescents

Circulation 2009

Prevalence of MS in Children

- Third National Health and Nutrition Examination Survey (1988-1994) reported a prevalence of 4%, but the prevalence in overweight children was 30% (Arch Pediatr Adolesc Med. 2003)
- A school-based study of North American adolescents found a 4.2% (ATP III) and 8.4% (WHO) prevalence of MS (*J Pediatr. 2004*)
- The prevalence of MS among Canadian children and adolescents was 11.5% (Int J Obes Relat Metab Disord. 2004)

Components of Metabolic Syndrome

Steinberger et al. Circulation, 2009

Insulin Resistance

- A core defect in type 2 diabetes
 - A recent study showed that 92% of patients with type 2 diabetes have insulin resistance
- Definition: Impaired response to the physiological effects of insulin (including those on glucose, lipid, and protein metabolism) and the effects on vascular endothelial function

Haffner SM, et al. *Diabetes Care*. 1999;22:562-568. Consensus Development Conference of the American Diabetes Association. *Diabetes Care*. 1998;21:310-314.

Insulin resistance

Insulin Resistance in Obese Children

The prevalence of the MS increased significantly with increasing insulin resistance (P < 0.001)

Insulin Resistance and CVD in Children

- Fasting insulin levels in 6-9 -year-old children predicted the children's level of blood pressure at age 9 to 15 years (Am J Hypertens, 1996)
- Strong relation over an 8-year period of observation between persistently high fasting insulin levels and the development of cardiovascular risk factors in children and young adults (*Circulation, 1996*)

Obesity and MS in Children

Obesity: BMI vs. Waist Circumference

- Waist circumference (WC) is more associated with visceral fat, whereas BMI is more associated with subcutaneous fat (Int J Obes 2006)
- Visceral fat (MRI), not BMI or waist-hip ratio, was associated with fasting insulin and triglycerides in obese adolescent girls (Am J Clin Nutr 1996)

How to Measure Waist Circumference

- Locate upper hip bone and top of right iliac crest
- Place measuring tape in horizontal plane around abdomen at iliac crest
- Ensure tape is snug, but does not compress the skin
- Tape should be parallel to floor
- Record measurement at the end of a normal expiration

*Ethnic/age-related differences in body fat distribution may affect validity of waist circumference as surrogate for abdominal fat

NIH, NHLBI, NHLBI Obesity Education Initiative, NAASO. NIH Publication Number 00-4084. October 2000. Misra A, et al. Nutrition. 2005;21:969-976.

Abdominal Adiposity Is Associated With Increased Risk of Diabetes

Carey VJ, et al. Am J Epidemiol. 1997;145:614-619.

Abdominal Adiposity Is Associated With Increased Risk of CV Events

Dagenais GR, et al. Am Heart J. 2005;149:54-60.

Obesity in Children

- >20% of all children and adolescents in the US are overweight
- Childhood adiposity is a strong predictor of obesity, insulin resistance and abnormal lipids in adulthood (*J Pediatr 2001, Metabolism* 1996)
- The rate of increase in adiposity during childhood was significantly related to the development of cardiovascular risk in young adults (*Circulation 1999*)

Obesity in Children: WC vs. BMI

WC were significantly associated with measures of abdominal fat and insulin resistance

J Pediatr 2006

Obesity and MS in Children and Adolescents

- The % of subjects with impaired glucose tolerance increased directly with the severity of obesity
- The prevalence of the MS was 38.7% in moderately obese subjects and 49.7% in severely obese subjects

NEJM, 2004

Hypertension and MS in Children

- Fasting insulin is significantly correlated with blood pressure in children and adolescents (Hypertension 1997)
- There is a strong association between childhood hypertension and adult MS (Pediatrics 2007)

Systolic Blood Pressure and MS

Pediatrics 2007

ARTIOLOGY OF ANTION

Lipid Abnormalities and MS

 Overweight children have significantly higher levels of total cholesterol, LDL cholesterol, and triglycerides and lower HDL-C levels than normal-weight children (Am J Clin Nutr 2006)

Brunzell JD, et al. Diabetes Care. 1999;22(suppl 3):C10-C13.

T2DM and Metabolic Syndrome

- If diabetes is not already present, the metabolic syndrome is a strong predictor for its development
- The risk for type 2 diabetes being five times more likely in individuals with the syndrome

Diabetes Care 2004;27(11):2676-81

Framingham Heart Study 30-Year Follow-Up: CVD Events in Patients With Diabetes

T2DM in Children

- The prevalence of T1DM in adolescents is 1.7/1000, whereas the prevalence of T2DM is 4.1/1000.
- This increase coincides with increasing rates of overweight and physical inactivity in children

Markers of Metabolic Syndrome

- Proinflammatory cytokines (IL-6, TNF-) and adipocytokines (adiponectin and leptin) are associated with obesity and insulin resistance (Eur J Clin Invest 2002)
- <u>CRP</u> was associated with insulin resistance and components of the MS in adolescents (*Diabetes Care 2005*)
- Endothelial dysfunction: carotid artery intimamedia thickness (<u>c-IMT</u>)

p=0.005 for the association with the insulin-resistance

CRP levels in Obese Children

NEJM, 2004

 CRP levels were significantly related to the degree of obesity (P<0.001), but not to the level of insulin resistance (P=0.12).

 The levels tended to rise with the number of components of the MS

c-IMT and MS in Overweight Children

Atherosclerosis, 2009

c-IMT and MS Component in Overweight Children

Atherosclerosis, 2009

Risk Factors for the MS

- Heredity
- Ethnic Differences
- Lifestyle Behaviors
 - Television-Watching Habits
 - Physical Activity
 - Dietary Intake

MS and Physical Activity

- Prevention of overweight and obesity in adults and children
- Lower levels of inflammatory cytokines and markers of oxidative stress
- Positively correlated with insulin sensitivity in adolescents (*Int J Obes Relat Metab Disord,* 2002)
- Associated with improved endothelial function and HDL-C, even in the absence of weight loss (Metabolism, 2005)

MS: Treatment

- Comprehensive behavioral modification in overweight children reduces body weight, improves body composition, and positively modifies many of the components of the MS within 3 months, and these effects are maintained at 1 year (*Pediatrics, 2005*)
- Combined dietary and exercise interventions improve endothelial dysfunction in overweight children (*Circulation, 2004*)

Reversibility of Cardiac Abnormalities

- Change in LV mass index (54±13 to 42±10 g/m^{2.7}, p 0.0001) correlated with weight loss (r=0.41, p<0.0001).
- Diastolic function improved (mitral E/Ea lateral 7.7±2.3 at pre-operative vs. 6.3± 1.6 at post-operative, p<0.003).

Effects of Weight Loss on LV Geometry Patterns

Improvement in T2DM and in CV Risk

- 11 adolescents who underwent Roux-en-Y gastric bypass (BMI 50±5.9 kg/m²)
- After surgery there was significant improvements in BMI (34%), fasting blood glucose (41%), fasting insulin conc. (81%), hemoglobin A1c levels (7.3%-5.6%)
- There were improvements in serum lipid levels and blood pressure

Change in Glucose Homeostasis

After surgery there was evidence of remission of type 2 diabetes mellitus in all but 1 patient

Pediatrics, 2009